	Roll No.				
The second	INDIAN SCHOOL SALALAH			ALTH O	COLLEGO LEGO
CHOOL C	FIRST TERM EXAMINATION – SEPTEMBER (AY- 2	2024-2	25)	N A E	BET
AHS					

Class: IX

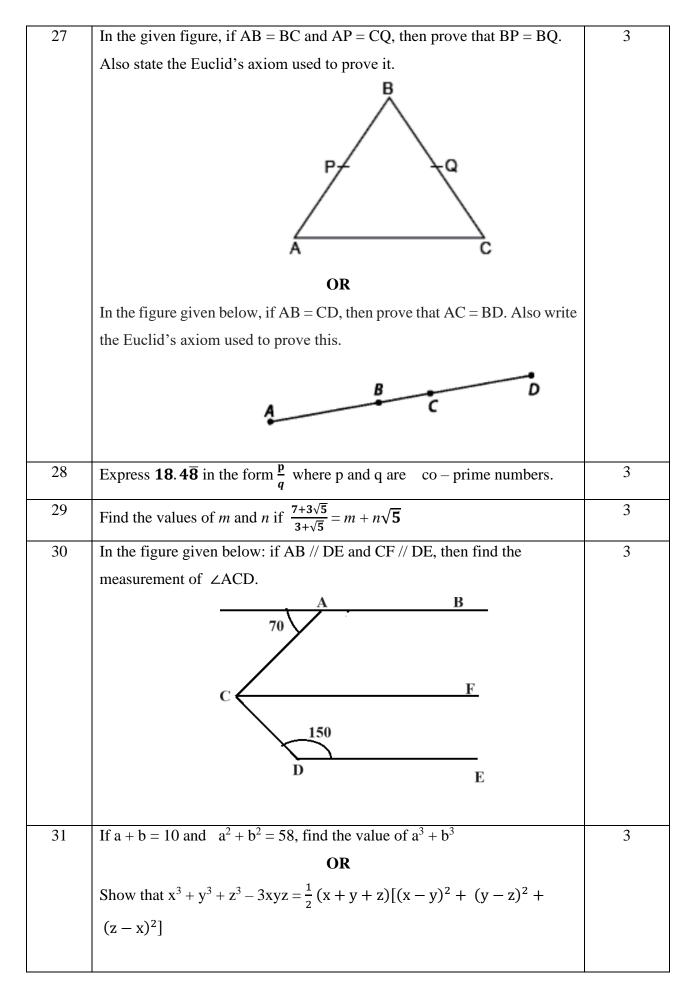
MATHEMATICS (041)

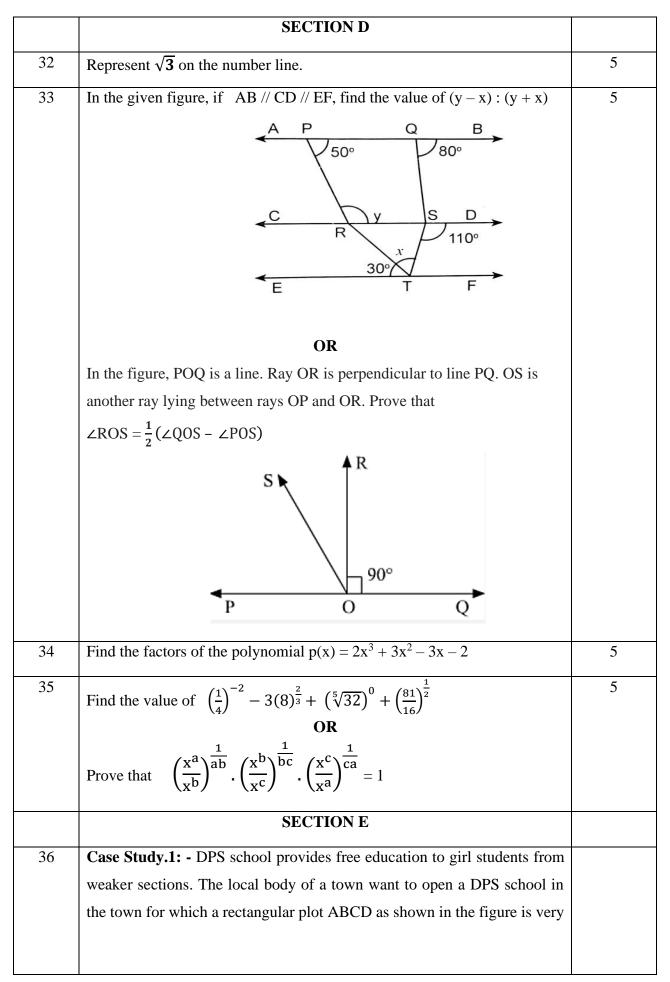
Date: 30/09/2024

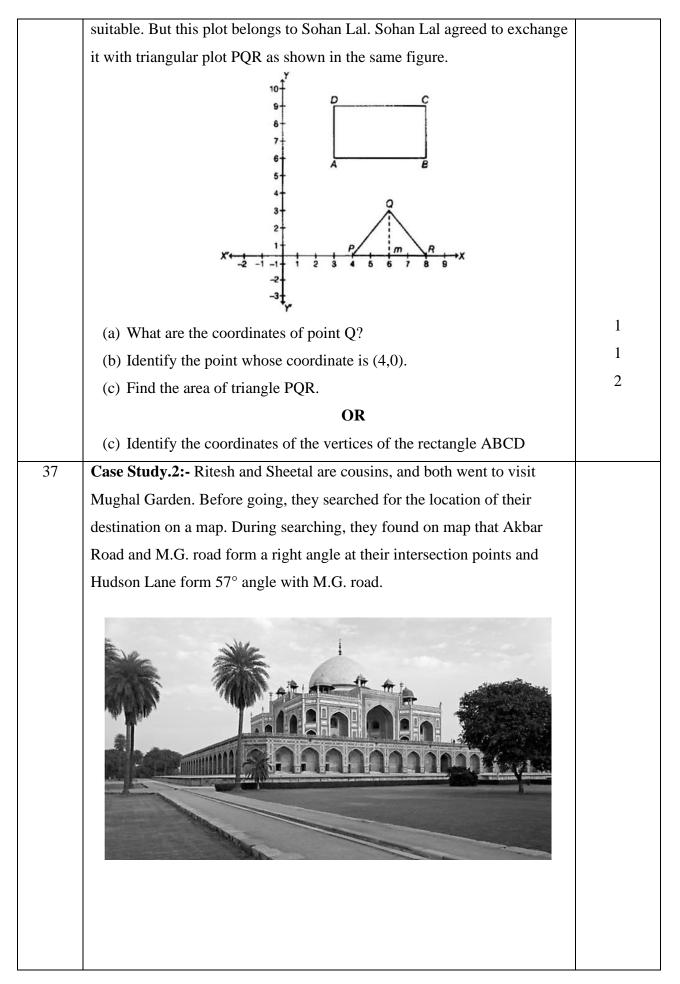
Time: 3 hours

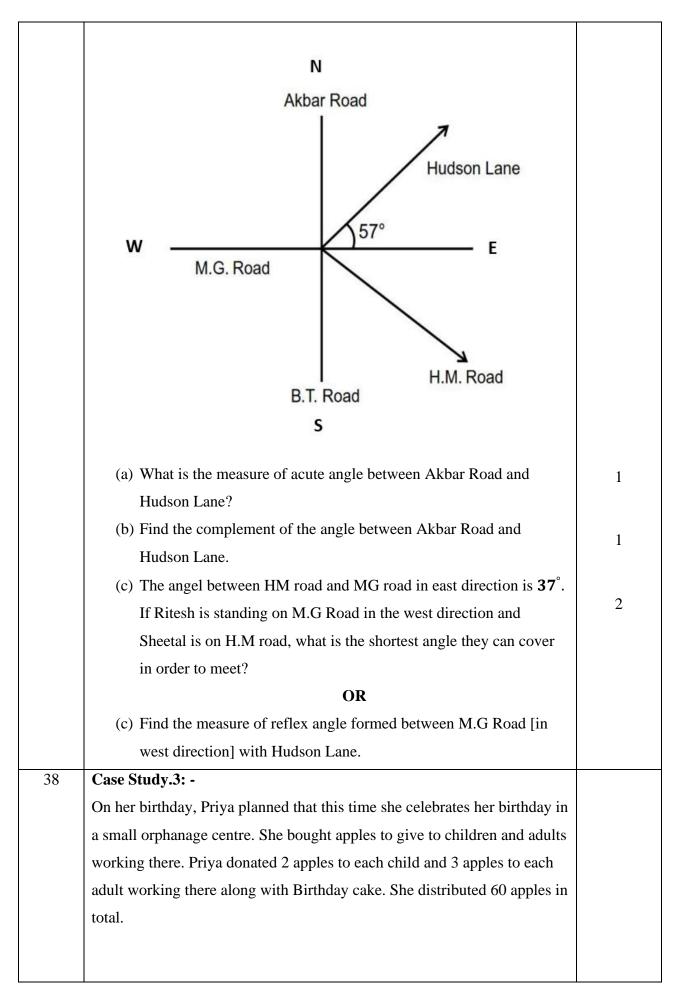
Maximum Marks: 80

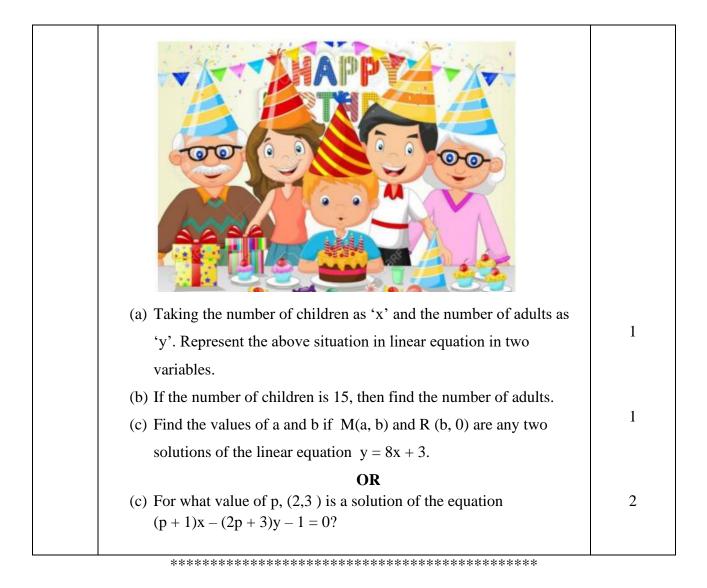
General Instructions:


- a) This Question Paper has 5 Sections A, B, C, D and E.
- b) Section A has 20 MCQs carrying 1 mark each.
- c) Section B has 5 questions carrying 02 marks each.
- d) Section C has 6 questions carrying 03 marks each.
- e) Section D has 4 questions carrying 05 marks each.
- f) Section E has 3 case based integrated units of assessment (04 marks each) with sub- parts of the values of 1, 1 and 2 marks each respectively.
- g) All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E
- h) Draw neat figures wherever required. Take $\pi = 22/7$ wherever required if not stated.


NO	SECTION A	MARKS
1	The decimal expansion of a rational number is	1
	(a) terminating or non – terminating non- repeating	
	(b) terminating	
	c) terminating or non – terminating but repeating	
	(d) none of these	
2	Through two points	1
	(a) No line can be drawn	
	(b) a unique line can be drawn	
	(c) more than one line can be drawn	
	(d) none of these	


3	Degree of the zero polynomial is	1	
	(a) 0 (b)1 (c) any rational number (d) not		
	defined		
4	Abscissa of all the points on the x – axis is		
	(a) 0 (b) 1 (c) 2 (d) any real number		
5	The linear equation $2x - 5y = 7$ has	1	
	(a) Unique solution (b) two solutions		
	(c) infinitely many solutions (d) no solutions		
6	If $AB = CD$, $CD = EF$ and $EF = PQ$, then which of the following is not		
	true.		
	(a) $AB = PQ$ (b) $CD = PQ$		
	(c) $AB = EF$ (d) $AB \neq EF$		
7	In the figure if AB // CD, then the value of x is	1	
	<u>A 55</u> <u>B</u>		
	$\frac{1}{C}$ $\frac{x}{D}$		
	(a) 145 (b) 125 (c) 115 (d) none of these		
8	The coefficient of x in the expansion $(x+3)^3$ is	1	
	(a) 1 (b) 9 (c) 18 (d) 27		
9	Any one solution of the equation $x - 2y = 4$ is	1	
	(a) $(0,2)$ (b) $(4,0)$ (c) $(1,1)$ (d) $(2,0)$		
10	The value of $300^2 - 299^2$ is	1	
	(a) 1 (b) 499 (c) 600 (d) 599		
11	$(16)^{\frac{3}{4}}$ is equal to	1	
	(a) 2 (b) 4 (c) 8 (d) 16		
2	The difference between the ordinate of $(5,7)$ and the abscissa of $(8, 15)$ is	1	
	(a) 3 (b) 1 (c) 8 (d) 10		
13	The number	1	
	$(3-\sqrt{2})(3+\sqrt{2})$ is		
	(a) A natural number (b) an irrational number		
	(c) a rational number (d) both (a) and (c)		


14	x = 5, $y = 2$ is a solution of the linear equation	1	
	(a) $x + 2y = 7$ (b) $5x + 2y = 7$	-	
	(a) x + 2y = 7 (b) 5x + 2y = 7		
	(c) $x + y = 7$ (d) $5x + y = 7$		
15	The equation $x = 7$, in two variables, can be written as	1	
	(a) $1x + 1y = 7$ (b) $1x + 0y = 7$		
	(c) $0x + 1y = 7$ (d) $0x + 0y = 7$		
16	In the figure POQ is a line. The value of y is	1	
	2y		
	4y $3y$		
	p o Q		
	(a) 30^{0} (b) 40^{0} (c) 20^{0} (d) none of these		
17	If the ratio between two complementary angles is 2:3, then the angles are	1	
	(a) 144^{0} , 216^{0} (b) 120^{0} , 240^{0}		
	(c) $54^0, 36^0$ (d) $60^0, 30^0$		
18	A point P (x, y) is such that x<0, y>0. In which quadrant does the point P		
	lie?		
	(a) First quadrant (b) Second quadrant		
	(c) Third quadrant (d) Fourth quadrant		
	Question number 19 and 20 are Assertion and Reason based questions.		
	Two statements are given, one labelled as Assertion (A) and the other		
	is labelled as Reason (R). Select the correct answer to these questions		
	form the codes (a) , (b), (c) and (d)Choose the correct option.		
19	Assertion (A): Two adjacent angles always form a linear pair.	1	
	Reason (R): In a linear pair of angles, two non-common arms are opposite rays.		
	(a) Both Assertion (A) and Reason (R) are true, and Reason (R) is the		
	correct explanation of Assertion (A)		
	(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the		
	correct explanation of Assertion (A)		
	(c) Assertion (A) is true, but the Reason (R) is false.		
	(d) Assertion (A) is false, but Reason (R) are true.		
L			


20	Assertion (A): $2 + \sqrt{3}$ is an irrational number.	1
	Reason (R): Sum of a rational number and an irrational number is always	
	an irrational number	
	(a) Both Assertion (A) and Reason (R) are true, and Reason (R) is the	
	correct explanation of Assertion (A)	
	(b) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the	
	correct explanation of Assertion (A)	
	(c) Assertion (A) is true, but the Reason (R) is false.	
	(d) Assertion (A) is false, but Reason (R) are true.	
	SECTION B	
21	Find the value of k given that $x = -1$ and $y = -1$ is a solution of the linear equation $9kx + 12ky = 63$.	2
22	Find the distance of the points (-3, 2) from the $x - axis$ and $y - axis$.	2
	Two lines AB and CD intersect at O such that $\angle POB = 90^{\circ}$ and	2
	$\angle POC = 30^{\circ}$, then find the measure of $\angle BOD$ and $\angle AOD$.	
	OR	
	An angle is equal to five times its supplement. Find the measure of the	
	An angle is equal to five times its supplement. Find the measure of the angle.	
24	If $x + y = 8$ and $xy = 15$, then find the value of $x^2 + y^2$	2
	OR	
	Find the value of $(99)^3$ using suitable identity.	
25	Write any two Euclid's Postulates.	2
	SECTION C	
26	Simplify:	3
	$(a + b + c)^2 + (a - b - c)^2$	

